Chapter 13:

Section B:

APPLICATIONS OF VECTOR LINES. Notes and examples:

1. $\binom{x}{y} = \binom{3}{4} + t \binom{-6}{-8}$ is the vector equation of the path of a particle.

t is the time in seconds, $t \ge 0$. The distance is measured in units of meters.

a.) Find the particles initial position.

When
$$t=0$$
, position vector = $\begin{pmatrix} 3\\4 \end{pmatrix}$ or $\frac{\text{coordinates}}{} \rightarrow \begin{pmatrix} 3,4 \end{pmatrix}$

b.) Find the velocity vector of the particle.

$$\begin{pmatrix} -6 \\ -8 \end{pmatrix}$$

c.) Find the *speed* of the particle.

Speed =
$$\left| \begin{pmatrix} -6 \\ -8 \end{pmatrix} \right| = \sqrt{\left(-6 \right)^2 + \left(-8 \right)^2} = \sqrt{36 + 64} = \sqrt{100} = 10$$

d.) If the particle continues in the **opposite direction** direction but the speed increases to 30m/s, state the new *yelocity vector*.

$$-3\begin{pmatrix} -6 \\ -8 \end{pmatrix} = \begin{pmatrix} 18 \\ 24 \end{pmatrix}$$

CONSTANT VELOCITY PROBLEMS

If a body has initial position vector \mathbf{a} and moves with constant velocity \mathbf{b} , its position at time t is given by

$$\mathbf{r} = \mathbf{a} + t\mathbf{b}$$
, for $t \ge 0$.

- 2. An object is **initially** at (2,6) and moves with **velocity vector** $2\hat{i} \hat{j}$ **Find:**
 - a.) the position of the object at any time *t* (*t* is in minutes)

$$\overrightarrow{r} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \end{pmatrix} + t \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$\therefore \begin{cases} x = 2 + 2t \\ y = 6 - t \end{cases}$$

$$\Rightarrow position (x, y) \longrightarrow (2+2t, 6-t) \text{ for any } t.$$

b.) the position after 5 minutes. t = 5

$$= (12, 1)$$

c.) The time when the object is due east of the origin.

Note: if
$$t = 6$$

then $x = 2 + 2(6)$
 $x = 14$

THE CLOSEST DISTANCE FROM A POINT TO A LINE

closes t when
$$\frac{1}{P^{erpendicular!}}$$

$$\overrightarrow{AR} \circ \overrightarrow{PX} = 0$$

after it has sailed from
$$(6, -6)$$
.

Point Velocity
$$= \sqrt{(-3)^2 + (4)^2}$$
Vector
$$= \sqrt{9 + 16}$$

Velocity

Velocity

Velocity

Velocity

Vector

$$= \sqrt{(-3)^2 + (4)^2}$$
 $= \sqrt{(-3)^2 + (4)^2}$
 $= \sqrt{9 + 16}$
 $= \sqrt{9 + 16}$

(speed = loku(n))

 $= \sqrt{25}$
 $= \sqrt{8}$

C.) Find when the liner is due east of the fishing boat. Vector

 $= \sqrt{4}$
 $= \sqrt{6}$
 $= \sqrt{8}$
 $= \sqrt{6}$
 $= \sqrt{8}$
 $= \sqrt{8}$

ed = 10 km/n) =
$$\sqrt{25}$$
 = $\sqrt{25}$ =

$$b = 8t$$
 $t = \frac{6}{8}$
 $t = \frac{3}{4} = 0.75$ hours

Nearest when perpendiculari

$$\begin{pmatrix} -3 \\ 4 \end{pmatrix} \circ \begin{pmatrix} (6-6t) - 0 \\ (-6+8t) - 6 \end{pmatrix} = 0$$

$$\begin{pmatrix} -3 \\ 4 \end{pmatrix} \circ \begin{pmatrix} 6-6t \\ -6+8t \end{pmatrix} = 0$$

$$-3(6-6t) + 4(-6+8t) = 0$$

$$-18+18t-24+32t = 0$$

$$\begin{pmatrix}
-3 \\
4
\end{pmatrix} \circ \begin{pmatrix}
(6-6t) - 0 \\
-6+8t
\end{pmatrix} = 0$$

$$\begin{pmatrix}
6-6t \\
-6+8t
\end{pmatrix} = 0$$

$$P(0.96, 0.72)$$

$$3(6-6t) + 4(-6+8t) = 0$$

$$-18 + 18t - 24 + 32t = 0$$

$$-42 + 50t = 0$$

$$50t = 42$$

$$t = 42/50 = 0.84 \text{ hours}$$

- 4. Consider the point P(-1, 2, 3) and the line with parametric equations x=1+2t, y=-4+3t, z=3+t.
- a.) Find the coordinates of the foot of the perpendicular from P to the line.

 $= \left(\begin{array}{c} (1+z+) + 1 \\ (-4+3+) - 2 \\ (3+4) - 3 \end{array} \right) = 0$

$$\begin{cases} x = 1 + 2t & PA = \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} x - 1 \\ y - 2 \\ 2 - 3 \end{pmatrix} = 0 \\ \begin{cases} x = 3 + t \\ 2 = 3 + t \end{cases}$$

$$\begin{cases} x = 1 + 2(1) = 3 \\ y - 4 + 3(1) = -1 \\ 2 = 3 + 1 = 4 \end{cases}$$

$$\begin{cases} x = 1 + 2(1) = 3 \\ y - 4 + 3(1) = -1 \\ 2(2 + 2t) + 3(-6 + 3t) + t = 0 \end{cases}$$

$$\begin{cases} x = 1 + 2t \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{pmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{bmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{bmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{bmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{bmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{bmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{bmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{bmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{bmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{bmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{bmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{bmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{bmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{bmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{bmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \\ 1 \end{bmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \end{bmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \end{bmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \end{bmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \end{bmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \end{bmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \end{bmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \end{bmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \end{bmatrix} = 0$$

$$\begin{cases} x = -1 \\ y - 2 \\ 3 \end{bmatrix} = 0$$

b.) *HENCE*, find the shortest distance from P to the line.

$$|PA| = size$$

$$|(2+2(1))| = |(-6+3(1))|$$

$$= |(4-3)|^2 + (-3)|^2 + |(-3)|^2 +$$

The line L_1 passes through the points P(2, 4, 8) and Q(4, 5, 4).

- (a) (i) Find \overrightarrow{PQ} .
 - (ii) Hence write down a vector equation for L_1 in the form r = a + sb.

[4 marks]

The line L_2 is perpendicular to L_1 , and parallel to $\begin{pmatrix} 3p\\2p\\4 \end{pmatrix}$, where $p\in\mathbb{Z}$.

- (b) (i) Find the value of p.
 - (ii) Given that L_2 passes through R (10, 6, -40), write down a vector equation for L_2 .

[7 marks]

(c) The lines L_1 and L_2 intersect at the point A. Find the x-coordinate of A.

[7 marks]

a) i)
$$\overrightarrow{PQ} = \begin{pmatrix} y - z \\ 5 - y \\ 4 - 8 \end{pmatrix} = \begin{pmatrix} z \\ 1 \\ -y \end{pmatrix}$$

$$ii) \quad \zeta: \quad \overrightarrow{r} = \begin{pmatrix} z \\ 4 \\ 8 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ -4 \end{pmatrix}$$

$$\frac{2}{r} = \begin{pmatrix} 10 \\ 6 \\ -40 \end{pmatrix} + 5 \begin{pmatrix} 6 \\ 4 \\ 4 \end{pmatrix}$$

$$\begin{cases} \lambda_{1} = 2 + 2t \\ \lambda_{2} = 4 + 4t \\ \lambda_{3} = 4 + 4t \end{cases}$$

$$\begin{cases} \lambda_{1} = 4 + 4t \\ \lambda_{2} = 6 + 4t \\ \lambda_{3} = 40 + 4t \end{cases}$$

$$\begin{cases} X_2 = 10 + 65 \\ Y_2 = 6 + 45 \\ Z_2 = -40 + 45 \end{cases}$$

$$(Y_1 = X_2, Y_1 = Y_2, \overline{Z}_1 = \overline{Z}_2)$$

$$\downarrow L_2$$

$$\begin{cases} X = 2 + 2t = 10 + 6s \\ Y = 4 + t = 6 + 4s \\ Z = 8 - 4t = -40 + 4s \end{cases}$$

Zeg: Zunknows:

$$2 + 2t = 10 + 6s$$
 $\longrightarrow (2t - 6s = 8)$
 $4 + t = 6 + 4s$ $\longrightarrow (t - 4s = 2) - 2$

$$\begin{array}{r}
 2t - 6s &= 8 \\
 + - 2t + 19s &= -4 \\
 + 2s &= 4
 \end{array}$$

·: + -4(+2) = 2

$$11. X = Z + 2(10) = ZZ$$

or
$$X = 10 + 6(z) = 22$$

$$t = 8 = 2$$

$$t = +10$$