Inverse & Composite Functions

Chapter 23 Supplement

10-3 Composition and Inverses of Functions

Objective To find the composite of two given functions and to find the inverse of a given function.

Consider the squaring function $f(x) = x^2$ and the doubling function g(x) = 2x. As the diagram below shows, these two functions can be combined to produce a new function whose value at x is f(g(x)), read "f of g of x."

g is the doubling function f is the squaring function $g(3) = 6 \longrightarrow f(g(3)) = f(6) = 36$ $5 \longrightarrow g(5) = 10 \longrightarrow f(g(5)) = f(10) = 100$ $x \longrightarrow g(x) = 2x \longrightarrow f(g(x)) = f(2x) = (2x)^2$

Notice that f(g(x)) is evaluated by working from the innermost parentheses to the outside. You begin with x, then g doubles x, and then f squares the result.

$$f(g(x)) = f(2x) = (2x)^2$$

The function whose value at x is f(g(x)) is called the **composite** of the functions f and g. The operation that combines f and g to produce their composite is called **composition**.

Example 1 If f(x) = 3x - 5 and $g(x) = \sqrt{x}$, find the following.

a.
$$f(g(4))$$

b.
$$g(f(4))$$

c.
$$f(g(x))$$

d.
$$g(f(x))$$

Solution

a. Since
$$g(4) = \sqrt{4} = 2$$
, $f(g(4)) = 3 \cdot 2 - 5 = 1$.

b. Since
$$f(4) = 3 \cdot 4 - 5 = 7$$
, $g(f(4)) = \sqrt{7}$.

c.
$$f(g(x)) = f(\sqrt{x}) = 3\sqrt{x} - 5$$

d.
$$g(f(x)) = g(3x - 5) = \sqrt{3x - 5}$$

Notice in Example 1 that $f(g(x)) \neq g(f(x))$.

The function I(x) = x is called the identity function. It behaves like the multiplicative identity 1.

$$a \cdot 1 = a$$
 for all numbers a

$$f(I(x)) = f(x)$$
 for all functions f

For the two functions f and g defined in the example at the top of the next page, the composites f(g(x)) and g(f(x)) are both equal to the identity function.

Example 2 If $f(x) = \frac{x+4}{2}$ and g(x) = 2x - 4, find the following.

a.
$$g(1)$$
 and $f(g(1))$

b.
$$f(-3)$$
 and $g(f(-3))$

c.
$$f(g(x))$$

d. g(f(x))

Solution

a.
$$g(1) = -2$$
 and $f(g(1)) = f(-2) = 1$. Answer
Notice that $g: 1 \rightarrow -2$ and $f: -2 \rightarrow 1$.

b.
$$f(-3) = \frac{1}{2}$$
 and $g(f(-3)) = g(\frac{1}{2}) = -3$. Answer

Notice that
$$f: -3 \rightarrow \frac{1}{2}$$
 and $g: \frac{1}{2} \rightarrow -3$.

Parts (a) and (b) suggest that the functions f and g "undo each other." Parts (c) and (d) prove that this is so for any number x.

c.
$$f(g(x)) = f(2x - 4) = \frac{2x - 4 + 4}{2} = x$$
 Answer

d.
$$g(f(x)) = g\left(\frac{x+4}{2}\right) = 2\left(\frac{x+4}{2}\right) - 4 = x$$
 Answer

In multiplication, two numbers whose product is the identity 1, such as 2 and 2⁻¹, are called inverses. Similarly, two functions whose composite is the identity I, such as f and g in Example 2, are called inverse functions.

Inverse Functions

The functions f and g are inverse functions if

$$f(g(x)) = x$$
 for all x in the domain of g

and

g(f(x)) = x for all x in the domain of f.

The inverse of a function f is usually denoted f^{-1} , read "f inverse." The superscript -1 in f^{-1} is *not* an exponent. The symbol $f^{-1}(x)$ denotes the value of f inverse at x; it does not mean $\frac{1}{f(x)}$

Suppose that two functions f and g are inverses and that f(a) = b, so that (a, b) is on the graph of f. Then g(b) = g(f(a)) = a, and the point (b, a) must be on the graph of g. This means every point (a, b) on the graph of f corresponds to a point (b, a) on the graph of g. Therefore, the graphs are mirror images of each other with respect to the line y = x. You can verify this by drawing graphs of inverse functions on the same axes. A computer or a graphing calculator may be helpful. The diagram shows the inverse functions of Example 2.

Some functions do not have inverse functions. If the reflection of the graph of a function f is itself to be the graph of a function, the graph of f must not contain two different points with the same y-coordinate. Therefore, a function has an inverse function if and only if it is one-to-one.

As you learned in Lesson 10-2, every horizontal line intersects the graph of a one-to-one function in at most one point. Therefore, you can use the *horizontal-line test* to tell whether a given function has an inverse function.

Horizontal-Line Test

A function has an inverse function if and only if every horizontal line intersects the graph of the function in *at most* one point.

If a function has an inverse function, you can find it by writing y for f(x), interchanging x and y, and solving for y. Example 3 illustrates.

Example 3 Let $f(x) = x^3 - 1$.

- a. Graph f and determine whether f has an inverse function. If so, graph f^{-1} by reflecting f across the line y = x.
- **b.** Find $f^{-1}(x)$.

Solution

- a. The graph of f is shown in red at the right. The graph of f passes the horizontal-line test, so f has an inverse. The graph of f^{-1} , shown in blue, is the reflection of the graph of f across the line y = x.
- b. Replace f(x) by y: $y = x^3 1$ Interchange x and y: $x = y^3 - 1$ Solve for y: $y^3 = x + 1$ $y = \sqrt[3]{x+1}$ $f^{-1}(x) = \sqrt[3]{x+1}$

Oral Exercises

Suppose f(x) = 3x, g(x) = x + 1, and $h(x) = x^2 + 2$. Find the following.

- 1. a. f(g(3))
- **b.** f(g(0))
- c. f(g(-6))
- **d.** f(g(x))

- 2. a. g(f(4))
- **b.** g(f(5))
- c. g(f(-6))

Answer

1 ((())

- 3. a. f(h(2))
- **b.** h(f(2))
- c. f(h(x))
- **d.** g(f(x))

- 4. a. g(h(3))
- **b.** h(g(3))
- c. g(h(x))
- d. h(f(x))

465

- 5. Find $f^{-1}(x)$.
- 6. Find $g^{-1}(x)$.
- h(x)) d. h(g(x))7. Does h^{-1} exist? Why or why not?

Written Exercises

Suppose $f(x) = \frac{x}{2}$, g(x) = x - 3, and $h(x) = \sqrt{x}$. Find a real-number value or an expression in x for each of the following. If no real value can be found, say so.

1. a. f(g(8))

b. f(g(-5))

c. f(g(0))

d. f(g(x))

2. a. g(f(8))

b. g(f(-5))

c. g(f(0))

d. g(f(x))

3. a. f(h(9))

b. f(h(4))

c. f(h(-4))

d. f(h(x))

4. a. h(f(32))

b. h(f(16))

c. h(f(x))

d. f(f(x))

5. a. h(g(12))

b. h(g(2))

c. h(g(x))

d. h(h(x))

6. a. g(h(9))

b. $g(h(\sqrt{3}))$

c. g(h(x))

d. g(g(x))

Use the horizontal-line test to determine whether each function f has an inverse function. If so, draw a rough sketch of f^{-1} by reflecting f across y = x.

In Exercises 11-14, find $f^{-1}(x)$. Then graph f and f^{-1} in the same coordinate system. You may wish to verify your graphs on a computer or a graphing calculator.

11.
$$f(x) = 2x - 3$$

11.
$$f(x) = 2x - 3$$
 12. $f(x) = \frac{x+6}{3}$ 13. $f(x) = x^3$ 14. $f(x) = \frac{12}{x}$

13.
$$f(x) = x^3$$

14.
$$f(x) = \frac{12}{x}$$

In Exercises 15-22, graph g and use the horizontal-line test to determine if ghas an inverse function. If so, find $g^{-1}(x)$. If g has no inverse, say so. You may wish to verify your graphs on a computer or a graphing calculator.

15.
$$g(x) = \left(\frac{8}{x}\right)^3$$

16.
$$g(x) = \sqrt[3]{2x}$$
 17. $g(x) = x^4$

17.
$$g(x) = x^2$$

18.
$$g(x) = |x|$$

B 19.
$$g(x) = x^2 - x$$

20.
$$g(x) = x^3 + 2$$
 21. $g(x) = \sqrt{x^2}$

21.
$$g(x) = \sqrt{x^2}$$

22.
$$g(x) = (2x + 3)^5$$

- 23. a. Draw the graph of $f(x) = 2^x$ by making a table of values and carefully plotting several points.
 - **b.** Draw the graph of f^{-1} on the same coordinate system by reflecting the graph of f in the line y = x.
 - c. Find $f^{-1}(2)$, $f^{-1}(4)$, $f^{-1}(8)$, and $f^{-1}(\frac{1}{2})$.
 - **d.** Give the domain and range of f and f^{-1} .

Written Exercises, pages 466-467 1. a. $\frac{5}{2}$

b. -4 **c.**
$$-\frac{3}{2}$$
 d. $\frac{x-3}{2}$ **3. a.** $\frac{3}{2}$ **b.** 1

c. not real d.
$$\frac{\sqrt{x}}{2}$$
 5. a. 3 b. not real

c.
$$\sqrt{x-3}$$
 d. $\sqrt[4]{x}$ 7. no 9. no

11.
$$f^{-1}(x) = \frac{x+3}{2}$$

13.
$$f^{-1}(x) = \sqrt[3]{x}$$

15.
$$g^{-1}(x) = \frac{8}{\sqrt[3]{x}}$$
 17. no inverse 19. no

inverse 21. no inverse 23. c. 1; 2; 3; -1**d.** $f: D = \{\text{reals}\}, R = \{y: y > 0\}; f^{-1}: D =$ $\{x: x > 0\}, R = \{\text{reals}\}\ 25. m = 1, b = 0;$ or m = -1

Mixed Review Exercises, page 467 1. $\frac{1}{125}$

2.
$$7\sqrt{2}$$
 3. $-5 - 12i$ 4. 81 5. -24 6. $\frac{1}{16}$ 7. 9 8. $5 - 4\sqrt{2}$ 9. -3 10. 128 11. $1 + 2i$ 12. 2

Self-Test 1, page 467 1. a. $2x^{2/3}y^{-1/3}$

b.
$$6^{-1/3}$$
 2. a. $\frac{25\sqrt{5}}{2}$ b. $x^2y^6\overline{x}y^5$ 3. {34}
4. a. $2^{-5\sqrt{2}}$ b. $2^{-8\sqrt{5}}$ 5. {3} 6. a. 13

4. a.
$$2^{-5\sqrt{2}}$$
 b. $2^{-8\sqrt{5}}$ **5.** {3} **6. a.** 13

b. 5 c.
$$6\sqrt{x} + 1$$
 d. $\sqrt{6x + 1}$

7.
$$f(g(x)) = 3\left(\frac{x+7}{3}\right) - 7 = x + 7 - 7 = x;$$

$$g(f(x)) = \frac{(3x-7)+7}{3} = \frac{3x}{3} = x$$

Written Exercises, pages 470-472 1. 3 3. 4

5. 0 7. -2 9.
$$\frac{3}{2}$$
 11. $\frac{1}{4}$ 13. $\frac{2}{3}$ 15. -3

17.
$$-\frac{2}{3}$$
 19. {49} 21. $\left\{\frac{1}{3}\right\}$ 23. $\left\{\frac{1}{8}\right\}$ 25. {9}

27.
$$\left\{\frac{1}{49}\right\}$$
 29. $\{x: x > 0 \text{ and } x \neq 1\}$

31. a.
$$3+2=5$$
 b. $\frac{1}{2}+\frac{3}{2}=2$

c.
$$\log_b M + \log_b N = \log_b MN$$
 33. a. $\log_6 x$

b. 2;
$$-\frac{1}{2}$$
 c. f : $D = \{\text{reals}\}, R = \{y: y > 0\};$

$$f^{-1}$$
: $D = \{x: x > 0\}, R = \{\text{reals}\}$

35.
$$y$$

$$(1, 6)$$

$$(-1, \frac{1}{6})$$

$$(0, 1)$$

$$(1, 0)$$

$$(\frac{1}{6}, -1)$$

b. 10^4

Written Exercises, pages 476-477

1.
$$6 \log_2 M + .3 \log_2 N$$
 3. $\log_2 M + \frac{1}{2} \log_2 N$

5.
$$4 \log_2 M - 3 \log_2 N$$

7.
$$\frac{1}{2} \log_2 M - \frac{3}{2} \log_2 N$$
 9. 1.90 11. 0.15

21.
$$\log_4 p^5 q$$
 23. $\log_3 \frac{A^4}{\sqrt{B}}$ 25. $\log_2 8MN$

27.
$$\log_5 \frac{5}{x^3}$$
 29. 2 31. $\frac{3}{2}$ 33. $\{45\}$ 35. $\{1\}$

37.
$$\{6\}$$
 39. $\{\pm 5\}$ 41. a. 6 b. $\frac{1}{4}$ c. 1

45. {3} **47.** {2} **49.** {
$$\sqrt{85}$$
} **51.** {2}

Mixed Review Exercises, page 477 1. $\left\{\frac{\sqrt{2}}{2}\right\}$

2.
$$\{-3, 1, 2\}$$
 3. $\{5\}$ 4. $\{4\}$ 5. $\{-\frac{3}{2}\}$ 6. $\{7\}$

7.
$$\left\{-\frac{1}{2}\right\}$$
 8. {4} 9. $\{2 \pm \sqrt{5}\}$ 10. 3 11. 2

Self-Test 2, page 477 1. a. $3^4 = 81$

b.
$$6^3 = 216$$
 2. a. $\log_5 625 = 4$

b.
$$\log_{25} 125 = \frac{3}{2}$$
 3. a. 3 **b.** 12 **4.** {3}

5.
$$\frac{5}{3} \log_2 M + 2 \log_2 N$$
 6. -1.40 7. {3}

Written Exercises, pages 481-482 1. 1.79

3. 0.00792 **5.** 575 **7.** 33.7 **9.** 7.13

11. 692 13. 0.0158 15. a.
$$\frac{\log 30}{\log 3}$$
 b. 3.10