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10-3 Composition and Inverses
of Functions

D#jective  To find the composite of two given functions and to find the
inverse of a given function.

Consider the squaring function f(x) = x* and the doubling function g(x) = 2x.
As the diagram below shows, these two functions can be combined to produce
a new function whose value at x is f{g(x)), read “’f of g of x.”’

g is the doubling function f is the squaring function _
3 g3) =6 fg(3)) = f(6) = 36
g(5) =10 fg(5)) = f(10) = 100
x ; glx) = 2x flgx) = f2x) = 2x)

Notice that f(g(x)) is evaluated by working from the innermost parentheses to
the outside. You begin with x, then g doubles x, and then f squares the result.

flg(n) = f(2x) = 2x)*

Example 1 1f f(x) = 3 — 5 and g() = V, find the following.

a. f(g(4) b. g(f(4)
c. flglx)) d. g(f(x))

Solution - a. Since g4) = V4 =2, flg@)=3-2-5=1
b. Since f(4) =3 -4 —5=17, g(f(4)) = V1.
c. flgl) =f(Vx)=3Vx—5

L_ d. g(fx) =g(3x—5)=V3x -5

Notice in Example 1 that fig(x)) # g(f(x)).
The function I(x) = x is calied the identity function. It behaves like
the multiplicative identity 1.

a~-1=a for all numbers a

fI(x)) = fix) for all functions [

For the two functions f and g defined in the example at the top of the next
page, the composites f(g(x)) and g(f(x)) are both equal to the identity function.
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Example 2 1f fix) = 4 and g(x) = 2x — 4, find the following.
a. g(1) andf(g(l)) b. f(—3) and g(f(—3)) c. flg(x) d. g(f(x))

Selution  a. g(1) = —2 and f(g(1)) = f(—2) = 1. Answer
Notice that g: 1— —2 and f: —2— 1.

b f~3) =+ and g((-3)) = (-%)=—3. Answer
Notice that f: 3—>— and g: —% -3,

Parts (a) and (b) suggest that the functions f and g “‘undo each other.”
Parts (c) and (d) prove that this is so for any number x.

c. flgl) = flax - 4) = E=TE =5 Answer

d. g(flx)) = g(x 3 4) 2(%—i) —4 :i\? Answer

In multiplication, two numbers whose product is the identity 1, such as 2
and 27", are called inverses. Similarly, two functions whose composite is the

3

identity /I, such as f and g in Example 2, are called inverse functions.

o ,!mferse FHMCHGH

o The functmns f and g ‘mverse fu ctlons if

(g(x)) = x for all x in the Honiin of 2 7

ah_d : .- () =1 fqr" | l,x in the domain’ off 7

The inverse of a function f is usually denoted !, read “‘f inverse.”’

Caution: The superscript —1 in f~! is not an exponent. The symbol f~'(x)

denotes the value of f inverse at x; it does nof mean ]7(1—)
Suppose that two functions f and g are NEET
inverses and that f(a) = b, so that (a, b) is ] :
on the graph of f. Then g(b) = g(fla)) = a,
and the point (b, @) must be on the graph
of g. This means every point (a, b) on the
graph of f corresponds to a point (b, a) on
the graph of g. Therefore, the graphs are
mirror images of each other with respect
to the line y = x. You can verify this by
drawing graphs of inverse functions on
the same axes. A computer or a graphing
calculator may be helpful. The diagram
shows the inverse functions of Example 2.
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Some functions do not have inverse functions. If the reflection of the

graph of a function f is itself to be the graph of a function, the graph of £ must
not contain two different points with the same y-coordinate. Therefore, a func-
tion has an inverse function if and only if it is one-to-one.

As you learned in Lesson 10-2, every horizontal line intersects the graph
of a one-to-one function in at most one point. Therefore, you can use the hori-
zontal-line test to tell whether a given function has an inverse function.

A function has an iim_ieﬂrsré function if and on] if o
- the graph of the function in gt most one point.

If a function has an inverse function, you can find it by writing y for f(x),
interchanging x and y, and solving for y. Example 3 llustrates.

| Example 3 Let fix) = * — 1.
a. Graph f and determine whether S has an inverse function. If so, graph f~1
by reflecting f across the line y=nx.

b. Find f~(x).

Sofution  a. The graph of f is shown in red at
the right. The graph of £ passes the
horizontal-line test, so f has an in-
verse. The graph of !, shown in
blue, is the reflection of the graph
of f across the line y = x.

b. Replace f(x) by y: y=x -1
Interchange x and y:  x =% - |
Solve for y: - P=x 41

C =¥

F Y=Yt I Anwwer

Cral Exercisas

Suppose f(x) = 3x, g(x) =x + 1, and h(x) = x* + 2. Find the following.

L a. f(g(3)) b. f(g(0)) c. f(g(—6)) d. flg(x))
2. a. g(f(4) b. g(f(5)) c. g(f(—6)) d. g(f(x))
3. a. flh(2)) b. h(£(2)) ¢. f(h(x)) d. h(f(x))
4. a. g(h(3)) b. h{g(3)) c. g(h(x)) d. h(g(x)
5. Find £ 1(x). 6. Find g~ '(x). 7. Does h™! exist? Why or why not?

Exponential and Logarithmic Functions 465



A

Yiritten Exercises

Suppose f(x) = %, g(x) =x — 3, and h(x) = \/x. Find a real-number value or
an expression in x for each of the following. If no real value can be found,

say so.

1. a. f(g(®8) b. f(g(—5) c. f(g(0) d. flgl)
2. a. g(f(8) b. g(f(—5) e. g(f(0) d. g(f()
3. a. f(h(9)) b. f(h(4)) c. f(h(—4) d. flh(x))
4. a. h(f(32)) b. h(f(16)) c. h(f(x)) d. f(f(x)
5. a. h(g(12)) b. h(g(2)) c. h(g(x) d. A(h(x))
6. a. g(h(9)) b. g(h(V3)) c. gh(x)) d. g(gl)

Use the horizontal-line test to determine whether each function [ has an
inverse function. If so, draw a rough sketch of f~! by reflecting f across
y =X ' '

In Exercises 11-14, find f~*(x). Then graph f and f~' in the same coordinate
system. You may wish to verify your graphs on a computer or a graphing
calculator.

x+6
3

1. f() = 2x — 3 12. fo) = 13. f(x) = 23 14. f(x) = Lf

In Exercises 15-22, graph g and use the horizontal-line test to determine if g
has an inverse function. If so, find g~ '(x). If g has no inverse, say so.
You may wish to verify your graphs on a computer or a graphing calculator.

15. g(x) = (%)3 16. g0) = V2x 17. g(x) = #* 18. ¢(0) = |
19. g(x) =x* —x 20. gx) =x>+2 21. g(x) = V¥ 22. g() = (2 + 3

23. a. Draw the graph of f(x) = 2* by making a table of values and carefully
plotting several points.

b. Draw the graph of £ " on the same coordinate system by reflecting the
graph of f in the line y = x.

c. Find f~12), £ (@), f7'(®), and f ().

d. Give the domain and range of f and f~".
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Written Exercises, pages 466-467 1. a. %

_ _3 =3 2
b. —4 ¢, 2d. 3 3.3.2b.1

\/?c

c. notreal d. — 5. a. 3 b. not real

C. x—3d\4/£7no9no
11 fly = 213 13. F i) = V5

15. g7'(x) =\Ti:- 17. no inverse 19. no
X

inverse 21. no inverse 23. c. 1:2: 3;
d. f: D= {reals}, R = {y: y>0}f D‘
{r: x> 0}, R = {reals} 25. m=1, b=0;
orm= —1]1

Mixed Review Exercises, page 467 1. Tég
2.7V2 3. —5-12 4.81 5. -24 6.

7.9 8.5-4V2 9. —3 10, 128
1. 1+2 12. 2

L
16

Self-Test 1, page 467 1. a. 2x /3 =

b. 674 2, a. 3-5%@- b. xzy\/x? 3. {34}
4. 2. 27V2 b, 278V5 5 131 6 4 |3
b.5 c.6Vx+1 d Vér+1

T, g0 =2{EET] g = gy =y
sy =D

Written Exercises, pages 470472 1. 3 3. 4
b e 3 1 -
5.0 7. =29, 5 1L q 13. 15, =3

2.
3
17. =2 19. 49} 21, {%} 23. {é] 25. {5}

27. {49J 29. {x:x>0and x5 1}

= 1.3
31. a. 34+2=5 b.2+2 2
c. log, M + log, N = log, MN 33. a. logg x
b. 2; —%- ¢ 1D = {reals}, R = {y: y > 0}
D ={x x>0}, R = {reals)

35. iz

39. {3}

41. positive

43. a. 120 dB
b. 107

Written Exercises, pages 476-477

1. 6 logy M +3 log, N 3. log2M+ logzN
5. 4logy M — 3 log, N

7. %logzMﬁglogzN 9.1.90 11. 0.15
13. 0.90 15. 0.35 17. —0.95 19. —0.22
A% 25, log, 8MN

21. log, p°q 23. log,

S

27. logs % 29.2 31.5 33. {45} 35. {1}

37. {6} 39. {£5) 41.a. 6 b. + c 1
45. {3} 47. {2} 49. {V85} s51. {2}

Mixed Review Exercises, page 477 1, {—\2@}

2.{-3,1,2} 3.{5} 4. {4} s. {w%} 6. {7}
7. {~i] 8. {4} 9. 2+v5 10.3 11 2

2
12.1 13. 1

Self-Test 2, page 477 1. a. 3% =381
b. 6% =216 2. a. logs 625 = 4

b. logys 125=2 3.a.3 b. 12 4. {3)

2log, M+ 21og, N 6. —1.40 7. {3}

Writter: Exercises, pages 481452 1. 1.79
3. 0.00792 5. 575 7. 33.7 9. 7.13

11. 692 13. 0.0158 15. a. 830

o 3 b. 3.10
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