Chapter 21/22AD  Assessment 

[bookmark: _GoBack](Note:  Chapter 22 section B and C will be EXCLUDED)

A quick review guide for you.

A. Anti-differentiation
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B. The Fundamental Theorem of Calculus [image: ]

[image: ] [image: ]








A few properties of definite integrals
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C. Indefinite Integration
[image: ]

A list of DERIVATIVE rules
[image: ]
Helpful hint:
sin(x)
cos(x)
-sin(x)
-cos(x)
A list of ANTIDERIVATIVE (or integration) rules
[image: ]

Alternatively, we could write:
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Remember that it is often useful to ALGEBRAICALLY simplify or manipulate a function FIRST, and then integrate:

For example:
 [image: ]



D. Integrating f(ax+b)
 
For composition functions involving a LINEAR function, you must remember to multiply by 1/a to cancel the chain rule!
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E. Definite Integrals
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YOU MUST KNOW HOW TO USE YOUR CALCULATOR TO EVALUATE!
(see next page)
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You can also do this manually on your calculator by doing the following (old OS)
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On the NEW OS, the display is much nicer (and mathematically correct!)
[image: ]Then simply plug in the upper and lower limits, function, and variable with which you will be anti differentiating with respect to.
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22.A  Area underneath a curve
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22D.  VOLUMES OF REVOLUTION
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IF YOU WANT TO ROTATE THE AREA BOUND BETWEEN TWO CURVES……THINK OF IT IN SECTIONS!
[image: ]
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You should also be aware of the formulas that are given on the IB formula sheet!
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(continued next page)
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For a continuous function f(z) with antiderivative F(z), / * f(@)dz = F(5)—F(a).
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if F'(z)=f(z) then /f(z)dz:F(z)+c.
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INTEGRALS OF POWERS OF CIRCULAR FUNCTIONS

Integrals involving sin®(az +b) and cos?(az +b) can be found by first using
sin® @ = 3 —  cos(26) or cos? = % + 2 cos(26).

These formulae are simply rearrangements of cos(26) formula.

For example, e sin?(3z— %) becomes % — 4 cos(6z —7)

. cosz(g) ‘becomes g+;msz(§):g+;mz.
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If F(z) is the antiderivative of f(z) where f(z) is continuous on the interval a < @ < b

then the definite integral of f(z) on this interval is /h f(z) de = F(b) — F(a).
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Itis common to write  F(3) — F(a) as [F(a)]Z, and so / ’ fa)de = P@)L
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DEFINITE INTEGRALS

To calculate [}’ 22 de, we first draw the graph of y = 22. Press
[2nd] [TRACE] (CALC) and select 7:f f(z)dz. Press 1
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AREA BETWEEN TWO FUNCTIONS

If two functions f(z) and g(z) intersect at
s=a and ¢=b, and f(z) > g(z) for
all a <z <b, then the area of the shaded
region between their points of intersection is
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When the region enclosed by y= f(z), the z-axis,
and the vertical lines © =a, z=b_ is rotated about
the g-axis to generate a solid, the volume of the
solid is given by

anum:nlmwnlllﬁnn:n/b yidz.

Use integration to find the volume
of the solid gencrated when the
lie y=c for 1<z<4
s revolved around the z-axis.

b
Volume of revolution = / Yo

4
= [

A
7
=
[51,
=7(%-3)
—21r cubic units

The volume of a cone is
Veone = $mr%h

So, in this example

V = ing?(4) - in12(1)

—6x_x

3 3
=2lr  which checks

= |0 Selt Tutor





image22.png
\





image23.png




image24.png
Topic 7—Calculus

71

Derivative of f(x)

Derivative of x"
Derivative of sinx

Derivative of cosx

Derivative of tanx

Derivative of ¢*

Derivative of Inx

s gl FEER 1)
y=109= Y 1) - imf LEHZS)

f@=x"=f()=m""
f(x)=sinx=> f'(x)=cosx
f(x)=cosx = f'(x) =—sinx

1

cos’x

S)=tanx= f'(x)=
f@=e'= f(9)=c

F)=mx= f@=1

x





image25.png
12

Chain rule

Product rule

Quotient rule

dy _dy du
=g(u), whe =f(x)=>->="x—
y=g(u), where u=f(x)

&y dv
y=uv=—=u—+
ax

du
-
dx  dx

jldlennc,po
x
[sinxdx=—cosx+C

Jeosxdr=sinx+C





image1.png
‘The process of finding y from % or f(z) from f'(z) is the reverse process of
differentiation. We call it antidifferentiation.

_— differentiation —__

\anndgfﬁ:rmu»nmm/
or integration
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If F(z) is a function where F'(z) = f(z) we say that:
o the derivative of F(z) is f(z) and
o the antiderivative of f(z) is F(a).
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