Cubic Cut-ups

Other red cubes were cut in thirds, fourths, and fifths along each side. How many small cubes? How many cubes have:

6 red faces?
5 red faces?
4 red faces?
3 red faces?
2 red faces?
1 red face?
no red faces?

Make a table for these cubes and predict the results for the next five cubes in the sequence:

Number of cuts in each direction	Number of small cubes	Three red faces	Number of small cubes with Two red faces	One red face	No red faces
1					
2					
3					
4					
5					
6					
7					
8					
9					

Generalize:

If a cube is cut with \mathbf{N} cuts in each direction, write a functio n ("rule") that describes:

- The total number of small cubes formed:
- The number of small cubes with three colored faces:
- The number of small cubes with two colored faces:
- The number of small cubes with one colored face:
- The number of small cubes with no colored faces:

