KEY

Rules for "finding" the nth term:

Fill in the following tables and answer the questions.

1. Linear (arithmetic) sequences

a.)
$$u_n = 3n + 2$$

n	1		2			3	4	5
un	5.		, 8		,1		,14	,17
1 st difference		3			3	3		3
2 nd difference			10	1		0	0	

b.)
$$u_n = -2n + 3$$

n	1	2	3	4	5
u _n	1	-1	-3	-5	-7
1 st difference	-2	-2	-2	- 7	?
2 nd difference		0	3	0	

c.)
$$u_n = an + b$$

n	1_	2	3	4	5
un	(a+5)	29+5	3a+5	49+5	59 +5
1 st difference	(0	0	9		3
2 nd difference		0	0	0	

The FIRST difference in a linear sequence is always

2. Quadratic sequences

(Remember when we dealt with quadratic functions, we used the general form

$$f(x) = ax^2 + bx + c$$

a.)
$$u_n = n^2 + 3n + 3$$

n	1	2	3	4	5
Un	7.	, 13	,21	/31	43
1 st difference		6		10	12
2 nd difference		2	2	2	

b.)
$$u_n = -2n^2 + 3$$

n	1	2	3	4	5
un	1	5	-15	-24	-47
1 st difference	-6	-1	0, -14	_	18
2 nd difference		-4	-4	-4	

$$c.) \quad u_n = an^2 + bn + c$$

n	1	2	3	4	5
un	(a+ b+0)	4a + 2b+c	9a+ 3b+c	16a+46+c	25a+ 56+1
1 st difference	Qq+5	5a-	+6 70	1+5 90	145/
2 nd difference		(Za)	29	2a /	

PREDICT what the THIRD difference will be for a CUBIC sequence.

Test your prediction with the following sequence.

3. a.)
$$u_n = 2n^3 + 3n^2 - 2n + 5$$

n	1	2	3	4	5
u _n	8.	,29	, 80	173.	320
1 st difference	2	1 ,5	-1. 9	3. 14	7
2 nd difference		30.	,42	.54	
3 rd difference		12	1	2	

b.)
$$u_n = an^3 + bn^2 + cn + d$$

n	1	2	3	4	5
u _n	a+b+c+d)	8a + 4b + 2ctd	27a+96+3c+d	64a+166+4c+	1d 125a+25b+5c
1 st difference	(7a+3b+	0 / 19	a +56+c 3	7a+75+c	Glat 95+c
2 nd difference	CI	2a+26)	18+26	2	49+25
3 rd difference		(6a		69	/

