Clip 180

Vectors - page 1 of 2

The diagram shows a trapezium PQRS.

Find, in terms of a and b, expressions for

a)
$$\overrightarrow{QP} = -\mathbf{a}$$
 b) $\overrightarrow{PR} = \mathbf{a} + \mathbf{b}$

b)
$$\overrightarrow{PR} = \mathbf{a} + \mathbf{b}$$
 c) $\overrightarrow{PS} = 3\mathbf{b}$

$$= -a + 3b$$
d) $\overrightarrow{QS} = 3b - a$

QS=QP+PS

In triangle ABC, P and Q are the midpoints of AB and AC.

$$\overrightarrow{AP} = \mathbf{p}$$
 and $\overrightarrow{AQ} = \mathbf{q}$.

accurately drawn

Diagram NOT

a) Find, in terms of p and q, expressions for

(i)
$$\overrightarrow{PQ}$$
 (ii) \overrightarrow{AB} q - p 2p

(iii)
$$\overrightarrow{AC}$$
 (iv) \overrightarrow{BC}
2q 2q - 2

2q - 2p

b) Use your results from (a) to prove that PQ is parallel to BC.

BC =
$$2q - 2p$$

= $2(q - p)$
= PO is parallel to PO

Therefore PQ is parallel to BC

3)

OAB is a triangle.

D is the midpoint of OB.

C is the midpoint of AB.

$$\overrightarrow{OA} = \mathbf{a} \text{ and } \overrightarrow{OB} = \mathbf{b}$$

- $\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC}$ AB = -a + b $OC = a + \frac{1}{2}(-a + b)$ $OC = \frac{1}{2}(a + b)$
- (i) Find \overrightarrow{OC} in terms of a and b. $OC = \frac{1}{2}(a + b)$
- (ii) Show that DC is parallel to OA.

$$\overrightarrow{DC} = \overrightarrow{DO} + \overrightarrow{OC}$$

$$= -\frac{1}{2}b + \frac{1}{2}(a + b)$$

$$= \frac{1}{2}a$$

$$\overrightarrow{OA} = a \quad \text{Therefore } \overrightarrow{DC} \text{ is parallel to } \overrightarrow{OA}$$

Clip 180

1)

PQRSTU is a regular hexagon.

$$\overrightarrow{PQ} = \mathbf{p}$$
 $\overrightarrow{QR} = \mathbf{q}$ $\overrightarrow{PS} = 2\mathbf{q}$

a) Find the vector PR in terms of p and q.

$$\overrightarrow{PR} = \overrightarrow{RX}$$

b) Prove that PQ is parallel to SX

$$PR = p + q$$

$$\overrightarrow{SX} = \overrightarrow{SP} + \overrightarrow{PX}$$

$$= \overrightarrow{SP} + 2\overrightarrow{PR}$$

$$= -2q + 2(p + q)$$

$$= -2q + 2p + 2q$$

$$= 2p$$

Therefore PQ is parallel to \overrightarrow{SX}

ABCD is a trapezium with BC parallel to AD.

$$\overrightarrow{AB} = 3 \mathbf{b}$$
 $\overrightarrow{BC} = 3 \mathbf{a}$ $\overrightarrow{AD} = 9 \mathbf{a}$

M is the midpoint of BC and N is the midpoint of AD.

a) Find the vector MN in terms of a and b.

$$\overrightarrow{MN} = 3a - 3b$$

X is the midpoint of MN and Y is the midpoint of CD.

b) Prove that XY is parallel to AD.

$$\overrightarrow{XY} = \overrightarrow{XN} + \overrightarrow{ND} + \overrightarrow{DY}$$

$$= \frac{1}{2}\overrightarrow{MN} + \overrightarrow{ND} + \overrightarrow{DY}$$

$$= \frac{1}{2}(3a - 3b) + 4\frac{1}{2}a + \overrightarrow{DY}$$

$$= 6a - 1\frac{1}{2}b + \overrightarrow{DY}$$

$$\overrightarrow{DY} = \frac{1}{2}\overrightarrow{DC}$$

$$= \frac{1}{2}(\overrightarrow{DA} + \overrightarrow{AB} + \overrightarrow{BC})$$

$$= -4\frac{1}{2}a + 1\frac{1}{2}b + 1\frac{1}{2}a$$

$$= 1\frac{1}{2}b - 3a$$

$$\overrightarrow{XY} = 6a - 1\frac{1}{2}b + 1\frac{1}{2}b - 3a$$

$$= 3a$$
Therefore \overrightarrow{XY} is parallel to \overrightarrow{AD}